RealClimate logo


Hurricane Heat

Filed under: — gavin @ 1 March 2007 - (Türkçe) (Português) (Français)

The big problem with much of the discussions about trends in hurricane activity is that the databases that everyone is working from are known to have significant inhomogeneities due to changes in observing practice and technology over the years. So it’s not surprising that a new re-analysis (Kossin et al, published yesterday) has been generating significant interest and controversy among the hurricane research community (see e.g. Prometheus or Chris Mooney). However, rather than this study being taken for what it is – a preliminary and useful attempt to make homogeneous a part of the data (1983 to 2005) – it is unfortunately being treated as if it was the definitive last word. We’ve often made the point that single papers are not generally the breakthroughs that are sometimes implied in press releases or commentary sites and this case is a good example of that.
More »

El Nino, Global Warming, and Anomalous U.S. Winter Warmth

Filed under: — mike @ 8 January 2007 - (Slovenčina) (Svenska)

It has now become all too common. Peculiar weather precipitates immediate blame on global warming by some, and equally immediate pronouncements by others (curiously, quite often the National Oceanic and Atmospheric Administration in recent years) that global warming can’t possibly be to blame. The reality, as we’ve often remarked here before, is that absolute statements of neither sort are scientifically defensible. Meteorological anomalies cannot be purely attributed to deterministic factors, let alone any one specific such factor (e.g. either global warming or a hypothetical long-term climate oscillation).

Lets consider the latest such example. In an odd repeat of last year (the ‘groundhog day’ analogy growing ever more appropriate), we find ourselves well into the meteorological Northern Hemisphere winter (Dec-Feb) with little evidence over large parts of the country (most noteably the eastern and central U.S.) that it ever really began. Unsurprisingly, numerous news stories have popped up asking whether global warming might be to blame. Almost as if on cue, representatives from NOAA’s National Weather Service have been dispatched to tell us that the event e.g. “has absolutely nothing to do with global warming”, but instead is entirely due to the impact of the current El Nino event.

[Update 1/9/07: NOAA coincidentally has announced today that 2006 was officially the warmest year on record for the U.S.]
[Update 2/11/08: It got bumped to second place. ]
More »

Tropical SSTs: Natural variations or Global warming?

Filed under: — group @ 11 September 2006

by Michael Mann and Gavin Schmidt

Roughly a year ago, we summarized the state of play in the ongoing scientific debate over the role of anthropogenic climate change in the observed trends in hurricane activity. This debate (as carefully outlined by Curry et al recently) revolves around a number of elements – whether the hurricane (or tropical cyclone) data show any significant variations, what those variations are linked to, and whether our understanding of the physics of tropical storms is sufficient to explain those links.

Several recent studies such as Emanuel (2005 — previously discussed here) and Hoyos et al (2006 — previously discussed here) have emphasized the role of increasing tropical sea surface temperatures (SSTs) on recent increases in hurricane intensities, both globally and for the Atlantic. The publication this week of a comprehensive paper by Santer et al provides an opportunity to assess the key middle question – to what can we attribute the relevant changes in tropical SSTs? And in particular, what can we say about Atlantic SSTs where we have the best data? More »

Fact, Fiction, and Friction in the Hurricane Debate

Filed under: — group @ 18 August 2006

Michael Mann and Gavin Schmidt

Judith Curry and colleagues have an interesting (and possibly provocative) article, “Mixing Politics and Science in Testing the Hypothesis That Greenhouse Warming Is Causing a Global Increase in Hurricane Intensity” in the latest issue of the Bulletin of the American Meteorological Society (BAMS). The article provides a solid review of the recent developments in the science focusing on potential climate change impacts on tropical cyclones. However, the article is more novel in its approach than the typical scientific review article. For instance, it attempts to deal with the issue of how one should test hypotheses that reflect a complex causal chain of individual hypotheses. This is of course relevant to investigations of climate change influences on tropical cyclone activity, where one is attempting to connect a phenomenon (climate change) that is global in spatial scale and multidecadal in timescale, to a phenomena that is intrinsically “mesoscale” (that is, spans at most hundreds of kilometers) in space and lasts only a few days.

More unusually, the article also takes an introspective look at the role of scientists in communicating societally-relevant science to the public, and provides a critical review of how the science dealing with climate change impacts on tropical cyclones and hurricanes has been reported in the media, and how that reporting has occasionally deepened the polarisation on the issue. In doing so, the article revisits some of the “false objectivity” problems we have talked about before (see here and here). They also assess fairly the quality of the arguments that have been made in response to the Emanuel (2005) and Webster et al (2005) papers in the hope of focussing discussion on the more valid points, rather than some of the more fallacious arguments. The article is unapologetic in advancing their particular point of view, and while we generally share it, we imagine that some readers may disagree. We hope, as we suspect the authors do as well, that it will in any case generate a productive discussion.

NOAA: Hurricane forecasts

Filed under: — group @ 9 June 2006

Guest commentary from Thomas Crowley

NOAA has issued its annual forecast for the hurricane season, along with its now-standard explanation that there is a natural cycle of multidecadal (40-60 year) length in the North Atlantic circulation (often referred to as the “Atlantic Multidecadal Oscillation”–see Figure), that is varying the frequency of Atlantic tropical cyclones, and that the present high level of activity is due to a concurrent positive peak in this oscillation. More »


Switch to our mobile site