RealClimate logo


Technical Note: Sorry for any recent performance issues. We are working on it.

Tree Rings and Climate: Some Recent Developments

Filed under: — mike @ 8 July 2012

by Michael E. Mann, Gavin Schmidt, and Eric Steig

Update 7/12/12: Media Matters comments on the latest misrepresentations of the Esper et al study discussed in our article: ‘Surprise: Fox News Fails Paleoclimatology’
Update 7/13/12: Further comment from Bob Ward of the Grantham Institute in Huffington Post UK “The World’s Most Visited Newspaper Website Continues to Regurgitate Nonsense from Climate Change ‘Sceptics’”
Update 7/14/12: Some additional context provided by this LiveScience article

It’s been a tough few months for tree-rings, perhaps unfairly. Back in April, we commented on a study [that one of us (Mike) was involved in] that focused on the possibility that there is a threshold on the cooling recorded by tree-ring composites that could limit their ability to capture the short-term cooling signal associated with larger volcanic eruptions. Mostly lost in the discussion, however, was the fact–emphasized in the paper—that the trees appeared to be doing a remarkably good job in capturing the long-term temperature signal—the aspect of greatest relevance in discussions of climate change.

This week there have been two additional studies published raising questions about the interpretation of tree-ring based climate reconstructions.
More »

Far out in North Carolina

Filed under: — stefan @ 24 June 2012

The extensive salt marshes on the Outer Banks of Carolina offer ideal conditions for unravelling the mysteries of sea level change during past centuries. Here is a short report from our field work there – plus some comments on strange North Carolina politics as well as two related new papers published today in Nature Climate Change.


The Outer Banks of Carolina are particularly vulnerable to coastal erosion and sea-level rise, partly because the land is subsiding and the banks are naturally moving landward. On the ocean front, land is continually being lost.
More »

Fresh hockey sticks from the Southern Hemisphere

In the Northern Hemisphere, the late 20th / early 21st century has been the hottest time period in the last 400 years at very high confidence, and likely in the last 1000 – 2000 years (or more). It has been unclear whether this is also true in the Southern Hemisphere. Three studies out this week shed considerable new light on this question. This post provides just brief summaries; we’ll have more to say about these studies in the coming weeks. More »

Yamalian yawns

Filed under: — gavin @ 11 May 2012

Steve McIntyre is free to do any analysis he wants on any data he can find. But when he ladles his work with unjustified and false accusations of misconduct and deception, he demeans both himself and his contributions. The idea that scientists should be bullied into doing analyses McIntyre wants and delivering the results to him prior to publication out of fear of very public attacks on their integrity is ludicrous.

By rights we should be outraged and appalled that (yet again) unfounded claims of scientific misconduct and dishonesty are buzzing around the blogosphere, once again initiated by Steve McIntyre, and unfailingly and uncritically promoted by the usual supporters. However this has become such a common occurrence that we are no longer shocked nor surprised that misinformation based on nothing but prior assumptions gains an easy toehold on the contrarian blogs (especially at times when they are keen to ‘move on’ from more discomforting events).

So instead of outrage, we’ll settle for simply making a few observations that undermine the narrative that McIntyre and company are trying to put out.
More »

Unlocking the secrets to ending an Ice Age

Filed under: — group @ 28 April 2012

Guest Commentary by Chris Colose, SUNY Albany

It has long been known that characteristics of the Earth’s orbit (its eccentricity, the degree to which it is tilted, and its “wobble”) are slightly altered on timescales of tens to hundreds of thousands of years. Such variations, collectively known as Milankovitch cycles, conspire to pace the timing of glacial-to-interglacial variations.

Despite the immense explanatory power that this hypothesis has provided, some big questions still remain. For one, the relative roles of eccentricity, obliquity, and precession in controlling glacial onsets/terminations are still debated. While the local, seasonal climate forcing by the Milankovitch cycles is large (of the order 30 W/m2), the net forcing provided by Milankovitch is close to zero in the global mean, requiring other radiative terms (like albedo or greenhouse gas anomalies) to force global-mean temperature change.

The last deglaciation occurred as a long process between peak glacial conditions (from ~26-20,000 years ago) to the Holocene (~10,000 years ago). Explaining this evolution is not trivial. Variations in the orbit cause opposite changes in the intensity of solar radiation during the summer between the Northern and Southern hemisphere, yet ice age terminations seem synchronous between hemispheres. This could be explained by the role of the greenhouse gas CO2, which varies in abundance in the atmosphere in sync with the glacial cycles and thus acts as a “globaliser” of glacial cycles, as it is well-mixed throughout the atmosphere. However, if CO2 plays this role it is surprising that climatic proxies indicate that Antarctica seems to have warmed prior to the Northern Hemisphere, yet glacial cycles follow in phase with Northern insolation (“INcoming SOLar radiATION”) patterns, raising questions as to what communication mechanism links the hemispheres.

There have been multiple hypotheses to explain this apparent paradox. One is that the length of the austral summer co-varies with boreal summer intensity, such that local insolation forcings could result in synchronous deglaciations in each hemisphere (Huybers and Denton, 2008). A related idea is that austral spring insolation co-varies with summer duration, and could have forced sea ice retreat in the Southern Ocean and greenhouse gas feedbacks (e.g., Stott et al., 2007).

Based on transient climate model simulations of glacial-interglacial transitions (rather than “snapshots” of different modeled climate states), Ganopolski and Roche (2009) proposed that in addition to CO2, changes in ocean heat transport provide a critical link between northern and southern hemispheres, able to explain the apparent lag of CO2 behind Antarctic temperature. Recently, an elaborate data analysis published in Nature by Shakun et al., 2012 (pdf) has provided strong support for these model predictions. Shakun et al. attempt to interrogate the spatial and temporal patterns associated with the last deglaciation; in doing so, they analyze global-scale patterns (not just records from Antarctica). This is a formidable task, given the need to synchronize many marine, terrestrial, and ice core records.
More »

References

  1. P. Huybers, and G. Denton, "Antarctic temperature at orbital timescales controlled by local summer duration", Nature Geosci, vol. 1, pp. 787-792, 2008. http://dx.doi.org/10.1038/ngeo311
  2. L. Stott, A. Timmermann, and R. Thunell, "Southern Hemisphere and Deep-Sea Warming Led Deglacial Atmospheric CO2 Rise and Tropical Warming", Science, vol. 318, pp. 435-438, 2007. http://dx.doi.org/10.1126/science.1143791
  3. A. Ganopolski, and D.M. Roche, "On the nature of lead–lag relationships during glacial–interglacial climate transitions", Quaternary Science Reviews, vol. 28, pp. 3361-3378, 2009. http://dx.doi.org/10.1016/j.quascirev.2009.09.019
  4. J.D. Shakun, P.U. Clark, F. He, S.A. Marcott, A.C. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner, and E. Bard, "Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation", Nature, vol. 484, pp. 49-54, 2012. http://dx.doi.org/10.1038/nature10915

Switch to our mobile site