Approach to reconstructing a target large-scale climate field from predictors employing multivariate regression methods. CFR methods have been applied both to filling spatial gaps in early instrumental climate data sets, and to the problem of reconstructing past climate patterns from ‘climate proxy’ data.
Blog – realclimate.org – All Posts
Climate Proxy ‘Proxy’ ou marqueur climatique
Climate ‘proxies’ are sources of climate information from natural archives such as tree rings, ice cores, corals, lake and ocean sediments, tree pollen, or human archives such as historical records or diaries, which can be used to estimate climate conditions prior to the modern period (e.g. mid 19th century to date) during which widespread instrumental measurements are available. Proxy indicators typically must be calibrated against modern instrumental information to yield a quantitative reconstruction of past climate.
Climate sensitivity Sensibilité climatique
Climate sensitivity is a measure of the equilibrium global surface air temperature change for a particular forcing. It is usually given as a °C change per W/m2 forcing. A standard experiment to determine this value in a climate model is to look at the doubled CO2 climate, and so equivalently, the climate sensitivity is sometimes given as the warming for doubled CO2 (i.e. from 280 ppm to 560 ppm). The forcing from doubled CO2 is around 4 W/m2 and so a sensitivity of 3°C for a doubling, is equivalent to a sensitivity of 0.75 °C/W/m2. The principal idea is that if you know the sum of the forcings, you can estimate what the eventual temperature change will be.
We should underscore that the concepts of radiative forcing and climate sensitivity are simply an empirical shorthand that climatologists find useful for estimating how different changes to the planet’s radiative balance will lead to eventual temperature changes. There are however some subtleties which rarely get mentioned. Firstly, there are a number of ways to define the forcings. The easiest is the ‘instantaneous forcing’ – the change is made and the difference in the net radiation at the tropopause is estimated. But it turns out that other definitions such as the ‘adjusted forcing’ actually give a better estimate of the eventual temperature change. These other forcings progressively allow more ‘fast’ feedbacks to operate (stratospheric temperatures are allowed to adjust for instance), but the calculations get progressively more involved.
Secondly, not all forcings are equal. Because of differences in vertical or horizontal distribution of forcings, some changes can have a more than proportional effect on temperatures. This can be described using a relative ‘efficacy’ factor that depends on the individual forcing. For instance, the effect of soot making snow and sea ice darker has a higher efficacy than an equivalent change in CO2 with the same forcing, mainly because there is a more important ice-albedo feedback in the soot case. The ideal metric of course would be a forcing that can be calculated easily and where every perturbation to the radiative balance had an relative efficacy of 1. Unfortunately, that metric has not yet been found!
Il est important de noter que les concepts de forçage radiatif et de sensibilité climatique sont des raccourcis empiriques que les climatologues trouvent utiles pour estimer l’impact de changements dans le bilan radiatif terrestre en termes de changements de températures. Quelques nuances doivent être mentionnées. Premièrement, il existe différentes manières de définir un forçage. La plus simple est le ‘forçage instantané’ – le changement est appliqué et la différence nette de radiation est estimée a la tropopause. Mais, en réalité, d’autres définitions, comme le ‘forçage ajusté’ donnent de meilleurs estimations du changement de température final. Ces autres forçages autorisent progressivement la mise en place de plus de rétroactions ‘rapides’ (les températures stratosphériques peuvent s’ajuster par exemple), mais le niveau de calcul augmente en retour.
Deuxièmement, tous les forçages ne sont pas égaux. En raison de différences dans les distributions verticales ou horizontales des forçages, certains changements peuvent avoir un effet sur les températures supérieur a celui directement proportionnel. Ceci peut être décrit comme un facteur relatif d’efficacité’, spécifique a chaque forçage. Par exemple, l’effet des suies a assombrir la neige et la glace de mer a une efficacité plus élevée qu’un changement équivalent en CO2 avec le même forçage, principalement en raison d’une rétro-action glace-albédo dans le cas des suies. Idéalement, un forçage pourrait être quantifiée par une méthode facile et dans laquelle chaque perturbation du bilan radiatif aurait une efficacité relative de 1. Malheureusement, une telle méthode n’a pas encore été trouvée !
CO2 Fertilization
It has sometimes been argued that the earth’s biosphere (in large part, the terrestrial biosphere) may have the capacity to sequestor much of the increased carbon dioxide (CO2) in the atmosphere associated with human fossil fuel burning. This effect is known as “CO2 fertilization” because, in the envisioned scenario, higher ambient CO2 concentrations in the atmosphere literally “fertilize” plant growth. Because plants in turn, in the process of photosynthesis, convert CO2 into oxygen, it is thus sometimes argued that such “co2 fertilization” could potentially provide a strong negative feedback on changing CO2 concentrations.
El Niño/Southern Oscillation (“ENSO”) El Niño – Oscillation Australe (“ENOA”-“ENSO”)
A natural coupled mode of climate variability associated with both surface temperature variations tied to El Niño and atmospheric circulation changes across the equatorial Pacific (see also ‘Southern Oscillation Index’). Term was first coined by Rasmusson and Carpenter (1982). More information on ENSO can be found here.
Empirical Orthogonal Function (“EOF”)
Spatial pattern tied to a particular mode of time/space variance in a spatiotemporal data set (see also “Principal Components Analysis or “PCA”).
Energy Balance Model (“EBM”)
Forcings Forçages
Forcings in the climate sense are external boundary conditions or inputs to a climate model. Obviously changes to the sun’s radiation are external, and so that is always a forcing. The same is true for changes to the Earth’s orbit (“Milankovitch cycles”). Things get a little more ambigous as you get closer to the surface. In models that do not contain a carbon cycle (and that is most of them), the level of CO2 is set externally, and so that can be considered a forcing too. However, in models that contain a carbon cycle, changes in CO2 concentrations will occur as a function of the climate itself and in changes in emissions from industrial activity. In that case, CO2 levels will be a feedback, and not a forcing. Almost all of the elements that make up the atmosphere can be considered feedbacks on some timescale, and so defining the forcing is really a function of what feedbacks you allow in the model and for what purpose you are using it. A good discussion of recent forcings can be found in Hansen et al (2002) and in Schmidt et al (2004).
General Circulation Model (“GCM”) Modele de Circulation Générale (MCG – “GCM”)
Typically refers to a three-dimensional model of the global atmosphere used in climate modeling (often erroneously called “Global Climate Model”). This term often requires additional qualification (e.g., as to whether or not the atmosphere is fully coupled to an ocean–see ‘Atmosphere-Ocean General Circulation Model’).
The length scales that are resolved in these models is typically on the order of 100s of kilometers (i.e. features that size or smaller are not directly resolved). The timestep for the models (how often the fields are updated) is usually 20 minutes to an hour. Thus in any day there would be 24 to 72 loops of the main calculations.
The basic variables are the temperature, humidity, liquid/ice water content and atmospheric mass. The physics usually consists of advection, radiation calculations, surface fluxes (latent, sensible heat etc.), convection, turbulence and clouds. More elaborate Earth System models often contain tracers related to atmospheric chemistry and aerosols (including dust and sea salt).
Les échelles de distances résolues dans ces modeles sont typiquement de l’ordre de la centaine de kilometres (c.a.d. que les caracteristiques de cette taille ou plus petites ne sont pas directement resolues). La résolution temporelle de ces modeles (fréquence de calcul des différents champs) est comprise en général entre 20 minutes et une heure. Ainsi, pour une journée, les calculs principaux seront effectués entre 24 et 72 fois.
Les variables fondamentales d’un modele sont le temperature, l’humidité, la fraction liquide/glace de l’eau et la masse atnosphérique. La physique du modele prend en compte l’advection, les calculs de radiations, les flux de surface (chaleur latente, sensible, etc…), la convection, turbulence, et les nuages. Les modeles les plus elaborés du Systeme Terre contiennent souvent des marqueurs liés a la chimie atmospherique et aux aerosols (incluant les poussieres et le sel de mer).
Greenhouse Gases (“GHGs”)
Greenhouse Gases (GHGs) refer to any atmospheric gases that absorb long wave radiation (emitted from the surface), thereby causing the planet’s surface to be warmer than it would be otherwise. These gases include water vapour, CO2, CH4, N2O, many CFCs (chloro-fluro-carbons). Ozone (O3) as well as being a shortwave absorber (in the ultra-violet range) also has a small longwave greenhouse effect. Other components of the atmosphere also absorb longwave radition (specifically aerosols and clouds) and hence have a greenhouse effect while not being gases themselves.
Oxygen (O2) and nitrogen (N2) while being the dominant gases in the atmosphere do not have significant absorption lines in the relevant longwave range and so are not greenhouse gases.